高一数学函数教案6篇

时间:
dopmitopy
分享
下载本文

教案的结构清晰,有助于教师在课堂上保持良好的节奏,通过小组讨论,教案可以促进学生之间的知识交流与合作,以下是大学生范文网小编精心为您推荐的高一数学函数教案6篇,供大家参考。

高一数学函数教案6篇

高一数学函数教案篇1

学习目标:

(1)理解函数的概念

(2)会用集合与对应语言来刻画函数,

(3)了解构成函数的要素。

重点:

函数概念的理解

难点:

函数符号y=f(x)的理解

知识梳理:

自学课本p29—p31,填充以下空格。

1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。

2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要

?

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

① ;② 。

5、设a, b是两个实数,且a

(1)满足不等式 的实数x的集合叫做闭区间,记作 。

(2)满足不等式a

(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

分别满足x≥a,x>a,x≤a,x

其中实数a, b表示区间的两端点。

完成课本p33,练习a 1、2;练习b 1、2、3。

例题解析

题型一:函数的概念

例1:下图中可表示函数y=f(x)的图像的只可能是( )

练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。

题型二:相同函数的判断问题

例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

④ 与 其中表示同一函数的是( )

a. ② ③ b. ② ④ c. ① ④ d. ④

练习:已知下列四组函数,表示同一函数的是( )

a. 和 b. 和

c. 和 d. 和

题型三:函数的定义域和值域问题

例3:求函数f(x)= 的定义域

练习:课本p33练习a组 4.

例4:求函数 , ,在0,1,2处的函数值和值域。

当堂检测

1、下列各组函数中,表示同一个函数的是( a )

a、 b、

c、 d、

2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )

a、5 b、-5 c、6 d、-6

3、给出下列四个命题:

① 函数就是两个数集之间的对应关系;

② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

③ 因为 的函数值不随 的变化而变化,所以 不是函数;

④ 定义域和对应关系确定后,函数的值域也就确定了.

其中正确的有( b )

a. 1 个 b. 2 个 c. 3个 d. 4 个

4、下列函数完全相同的是 ( d )

a. , b. ,

c. , d. ,

5、在下列四个图形中,不能表示函数的图象的是 ( b )

6、设 ,则 等于 ( d )

a. b. c. 1 d.0

7、已知函数 ,求 的值.( )

高一数学函数教案篇2

一、说教材

1、地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标的确定及依据

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 理解对数函数的概念、掌握对数函数的图象和性质。

(2) 培养学生自主学习、综合归纳、数形结合的能力。

(3) 培养学生用类比方法探索研究数学问题的素养;

(4) 培养学生对待知识的科学态度、勇于探索和创新的精神。

(5) 在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:底数a对对数函数的图象和性质的影响;

关键:对数函数与指数函数的类比教学

由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用"从特殊到一般"、"从具体到抽象"的方法。

(3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。

(4)投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教程

在认真分析教材、教法、学法的基础上,设计教学过程如下:

(一) 创设问题情景、提出问题

在某细胞分裂过程中,细胞个数y是分裂次数x的函数 对数函数说课稿 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

问题一:这是一个怎样的函数模型类型呢?

设计意图:复习指数函数

问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

设计意图:为了引出对数函数

问题三:在关系式 对数函数说课稿 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。

(二) 意义建构:

1. 对数函数的概念:

同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为 对数函数说课稿 ,我们也可以把它改为对数式, 对数函数说课稿 ,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。

设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

但在习惯上,我们用x表示自变量,用y表示函数值

问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)

问题三:在 对数函数说课稿 中,a有什么限制条件吗?请结合指数式给以解释。

问题四:你能根据指数函数的定义给出对数函数的定义吗?

问题五:对数函数说课稿与对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

问题六:对数函数说课稿与 对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域

2. 对数函数的图象与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

(提示学生进行类比学习)

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。

合作探究2:当 对数函数说课稿 函数 对数函数说课稿 与 对数函数说课稿 的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

问题1:对数函数 对数函数说课稿 ( 对数函数说课稿 )是否具有奇偶性,为什么?

问题2:对数函数 对数函数说课稿 ( 对数函数说课稿 ),当 对数函数说课稿 时,x取何值,y 对数函数说课稿 0,x取何值,y 对数函数说课稿 ,当 对数函数说课稿 呢?

问题3:对数式 对数函数说课稿 的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。

知识拓展:函数 对数函数说课稿 称为 对数函数说课稿 的反函数,反之,函数 对数函数说课稿 也称为 对数函数说课稿 的反函数。一般地,如果函数 对数函数说课稿 存在反函数,那么它的反函数记作为 对数函数说课稿

(三) 数学应用

1. 例题

例1:求下列函数的定义域

(1) 对数函数说课稿

(2) 对数函数说课稿 ( 对数函数说课稿 )

(该题主要考查对数函数 对数函数说课稿 的定义域 对数函数说课稿 这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1) 对数函数说课稿 , 对数函数说课稿

(2) 对数函数说课稿 , 对数函数说课稿

(3) 对数函数说课稿 , 对数函数说课稿

(4) 对数函数说课稿 , 对数函数说课稿 ,

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

合作探究4:已知 对数函数说课稿 ,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)

本题可以从以下几方面加以引导点拨

1.本题的难点在哪儿?

2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系

本题也可以从形的角度来思考。

(四) 目标检测

p69 1,2,3

(五) 课堂小结

由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)

(六)布置作业

p70 1,2,3

高一数学函数教案篇3

教学目标:

使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.

教学重点:

复合函数单调性、奇偶性的讨论方法.

教学难点:

复合函数单调性、奇偶性的讨论方法.

教学过程:

[例1]设loga23 <1,则实数a的取值范围是

a.0<a<23 b. 23 <a<1

c.0<a<23 或a>1d.a>23

解:由loga23 <1=logaa得

(1)当0<a<1时,由y=logax是减函数,得:0<a<23

(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1

综合(1)(2)得:0<a<23 或a>1 答案:c

[例2]三个数60.7,0.76,log0.76的大小顺序是

a.0.76<log0.76<60.7 b.0.76<60.7<log0.76

c.log0.76<60.7<0.76 d.log0.76<0.76<60.7

解:由于60.7>1,0<0.76<1,log0.76<0 答案:d

[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小

解法一:作差法

|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |

=1|lga| (|lg(1-x)|-|lg(1+x)|)

∵0<x<1,∴0<1-x<1<1+x

∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)

由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,

∴|loga(1-x)|>|loga(1+x)|

解法二:作商法

lg(1+x)lg(1-x) =|log(1-x)(1+x)|

∵0<x<1 ∴0<1-x<1+x

∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x

由0<x<1 ∴1+x>1,0<1-x2<1

∴0<(1-x)(1+x)<1 ∴11+x >1-x>0

∴0<log(1-x) 11+x <log(1-x)(1-x)=1

∴|loga(1-x)|>|loga(1+x)|

解法三:平方后比较大小

∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]

=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x

∵0<x<1,∴0<1-x2<1,0<1-x1+x <1

∴lg(1-x2)<0,lg1-x1+x <0

∴loga2(1-x)>loga2(1+x)

即|loga(1-x)|>|loga(1+x)|

解法四:分类讨论去掉绝对值

当a>1时,|loga(1-x)|-|loga(1+x)|

=-loga(1-x)-loga(1+x)=-loga(1-x2)

∵0<1-x<1<1+x,∴0<1-x2<1

∴loga(1-x2)<0, ∴-loga(1-x2)>0

当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0

∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0

∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|

[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为r,求实数a的取值范围

解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈r恒成立.

当a2-1≠0时,其充要条件是:

a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53

又a=-1,f(x)=0满足题意,a=1不合题意.

所以a的取值范围是:(-∞,-1]∪(53 ,+∞)

[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小

解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)

f(x)-g(x)=1+logx3-2logx2=logx(34 x).

①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).

若34 x<1,则1<x<43 ,这时f(x)<g(x)

②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)

故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)

当x∈(1,43 )时,f(x)<g(x)

[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]

解:原方程可化为

(9x-1-5)= [4(3x-1-2)]

∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0

∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3

∴x=1或x=2 经检验x=1是增根

∴x=2是原方程的根.

[例7]解方程log2(2-x-1) (2-x+1-2)=-2

解:原方程可化为:

log2(2-x-1)(-1)log2[2(2-x-1)]=-2

即:log2(2-x-1)[log2(2-x-1)+1]=2

令t=log2(2-x-1),则t2+t-2=0

解之得t=-2或t=1

∴log2(2-x-1)=-2或log2(2-x-1)=1

解之得:x=-log254 或x=-log23

高一数学函数教案篇4

教学目标:

(一)教学知识点:

1、对数函数的概念;

2.对数函数的图象和性质.

(二)能力训练要求:

1.理解对数函数的概念;

2.掌握对数函数的图象和性质

(三)德育渗透目标:

1.用联系的观点分析问题;

2.认识事物之间的互相转化

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:

1.指数函数是否存在反函数?

2.求指数函数的反函数

①;指出反函数的定义域。

3.结论

所以函数与指数函数互为反函数。

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.图象的加深理解:

下面我们来研究这样几个函数:

我们发现:

与图象关于x轴对称;与图象关于x轴对称.

一般地,与图象关于x轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数,

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本p85,习题2.8,1、3

高一数学函数教案篇5

一、教学目标:

1、知识与技能

(1)理解指数函数的概念和意义;

(2)与的图象和性质;

(3)理解和掌握指数函数的图象和性质;

(4)指数函数底数a对图象的影响;

(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小

(6)体会具体到一般数学讨论方式及数形结合的思想。

2、情感、态度、价值观

(1)让学生了解数学来自生活,数学又服务于生活的哲理。

(2)培养学生观察问题,分析问题的能力。

二、重、难点:

重点:

(1)指数函数的概念和性质及其应用。

(2)指数函数底数a对图象的影响。

(3)利用指数函数单调性熟练比较几个指数幂的大小。

难点:

(1)利用函数单调性比较指数幂的大小。

(2)指数函数性质的归纳,概括及其应用。

三、教法与教具:

①学法:观察法、讲授法及讨论法。

②教具:多媒体。

四、教学过程:

第一课时

讲授新课

指数函数的定义

一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为r。

提问:在下列的关系式中,哪些不是指数函数,为什么?

(1)(2)(3)

(4)(5)(6)

(7)(8)(>1,且)

小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集r。

若t;0,如在实数范围内的函数值不存在。

若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。先来研究的情况。

下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。

再研究,0t;t;1的情况,用计算机完成以下表格并绘出函数的图象。

从图中我们看出。

通过图象看出实质是上的。

讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?

②利用电脑软件画出的函数图象。

练习p711,2

作业p76习题3-3a组2

课后反思:

高一数学函数教案篇6

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

二、重难点的确定

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

六、教学过程

(一)创设情景,引入新课

情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。

名次

1

2

3

4

5

6

7

8

9

10

得分

情景2:汽车的行驶速度为时过早80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x

情景3:某市一天24小时内的气温变化图:(图略)

提问(1):这三个例子中都涉及到了几个变化的量?(两个)

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)

提问(3):这样的关系在初中称之为什么?(函数)引出课题

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。

这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念

1、引导分析,探求特征

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)

及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

2、抽象归纳,引出概念

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

板书:函数的概念

上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意

提问(7):你觉得这个定义中应注意哪些问题?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

2、例题剖析,强化概念

例1、判断下列对应是否为函数:

(1)

(2)

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);

(2)y=x-1;

(3);

(4)

[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

(1)

(2)

[设计意图]让学体会理解函数的三要素。

4、巩固练习,运用概念

书本练习p24:1,2,3,4

5、课堂小结,提升思想

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

七、教学评价

1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。

2、为使课堂形式更加丰富,也可将某些问题改成判断题。

3、在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理

4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。

高一数学函数教案6篇相关文章:

幼儿大班数学1到10的教案优质6篇

大班数学有趣的数学教案7篇

大班数学有趣的数学教案推荐5篇

初中数学教案优秀教案优秀5篇

初中数学教案优秀教案最新5篇

小学数学人教版教案8篇

小学数学一年级教案8篇

小学数学认位置教案8篇

数学认识圆形小班教案7篇

生活数学教案5篇

高一数学函数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
142065