高一数学幂函数教案7篇

时间:
dopmitopy
分享
下载本文

教案是教师与学生之间沟通的桥梁,它可以帮助学生了解教学内容和目标,并为他们提供学习的指导,教案的编写过程需要仔细的研究和计划,以下是大学生范文网小编精心为您推荐的高一数学幂函数教案7篇,供大家参考。

高一数学幂函数教案7篇

高一数学幂函数教案篇1

教学目标:

使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

教学重点:

函数的概念,函数定义域的求法.

教学难点:

函数概念的理解.

教学过程:

Ⅰ.课题导入

[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

问题一:y=1(xr)是函数吗?

问题二:y=x与y=x2x 是同一个函数吗?

(学生思考,很难回答)

[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

Ⅱ.讲授新课

[师]下面我们先看两个非空集合a、b的元素之间的一些对应关系的例子.

在(1)中,对应关系是乘2,即对于集合a中的每一个数n,集合b中都有一个数2n和它对应.

在(2)中,对应关系是求平方,即对于集合a中的每一个数m,集合b中都有一个平方数m2和它对应.

在(3)中,对应关系是求倒数,即对于集合a中的每一个数x,集合b中都有一个数 1x 和它对应.

请同学们观察3个对应,它们分别是怎样形式的对应呢?

[生]一对一、二对一、一对一.

[师]这3个对应的共同特点是什么呢?

[生甲]对于集合a中的任意一个数,按照某种对应关系,集合b中都有惟一的数和它对应.

[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

现在我们把函数的概念进一步叙述如下:(板书)

设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有惟一确定的数f(x)和它对应,那么就称f︰ab为从集合a到集合b的一个函数.

记作:y=f(x),xa

其中x叫自变量,x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xa}叫函数的值域.

一次函数f(x)=ax+b(a0)的定义域是r,值域也是r.对于r中的任意一个数x,在r中都有一个数f(x)=ax+b(a0)和它对应.

反比例函数f(x)=kx (k0)的定义域是a={x|x0},值域是b={f(x)|f(x)0},对于a中的任意一个实数x,在b中都有一个实数f(x)= kx (k0)和它对应.

二次函数f(x)=ax2+bx+c(a0)的定义域是r,值域是当a0时b={f(x)|f(x)4ac-b24a };当a0时,b={f(x)|f(x)4ac-b24a },它使得r中的任意一个数x与b中的数f(x)=ax2+bx+c(a0)对应.

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

y=1(xr)是函数,因为对于实数集r中的任何一个数x,按照对应关系函数值是1,在r中y都有惟一确定的值1与它对应,所以说y是x的函数.

y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是r,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

[师]理解函数的定义,我们应该注意些什么呢?

(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

注意:①函数是非空数集到非空数集上的一种对应.

②符号f:ab表示a到b的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

③集合a中数的任意性,集合b中数的惟一性.

④f表示对应关系,在不同的函数中,f的具体含义不一样.

⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、f(x)、g(x)等符号来表示

Ⅲ.例题分析

[例1]求下列函数的定义域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

解:(1)x-20,即x2时,1x-2 有意义

这个函数的定义域是{x|x2}

(2)3x+20,即x-23 时3x+2 有意义

函数y=3x+2 的定义域是[-23 ,+)

(3) x+10 x2

这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

注意:函数的定义域可用三种方法表示:不等式、集合、区间.

从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

(1)如果f(x)是整式,那么函数的定义域是实数集r;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

下面我们来看求函数式的值应该怎样进行呢?

[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

[师]生乙的回答完整吗?

[生]完整!(课本上就是如生乙所述那样写的).

[师]大家说,判定两个函数是否相同的依据是什么?

[生]函数的定义.

[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

(无人回答)

[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

(生恍然大悟,我们怎么就没想到呢?)

[例2]求下列函数的值域

(1)y=1-2x (xr) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

解:(1)yr

(2)y{1,0,-1}

(3)画出y=x2+4x+3(-31)的图象,如图所示,

当x[-3,1]时,得y[-1,8]

Ⅳ.课堂练习

课本p24练习17.

Ⅴ.课时小结

本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

Ⅵ.课后作业

课本p28,习题1、2. 文 章来

高一数学幂函数教案篇2

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

高一数学对数函数教案:教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

高一数学对数函数教案:教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高一数学幂函数教案篇3

教学目标

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重 点

函数单调性的证明及判断。

难 点

函数单调性证明及其应用。

一、复习引入

1、函数的定义域、值域、图象、表示方法

2、函数单调性

(1)单调增函数

(2)单调减函数

(3)单调区间

二、例题分析

例1、画出下列函数图象,并写出单调区间:

(1) (2) (2)

例2、求证:函数 在区间 上是单调增函数。

例3、讨论函数 的单调性,并证明你的结论。

变(1)讨论函数 的单调性,并证明你的结论

变(2)讨论函数 的单调性,并证明你的结论。

例4、试判断函数 在 上的单调性。

三、随堂练习

1、判断下列说法正确的是 。

(1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

(2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

(3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

(4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。

2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )

a.上半平面 b.下半平面 c.左半平面 d.右半平面

3、函数 在 上是___ ___;函数 在 上是__ _____。

3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

4、求证:函数 是定义域上的单调减函数。

四、回顾小结

1、函数单调性的判断及证明。

课后作业

一、基础题

1、求下列函数的单调区间

(1) (2)

2、画函数 的图象,并写出单调区间。

二、提高题

3、求证:函数 在 上是单调增函数。

4、若函数 ,求函数 的单调区间。

5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

三、能力题

6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。

高一数学幂函数教案篇4

?教学目标】

?知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

?能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

?德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,

?教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.

?教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的'数形结合思想将贯穿于我们整个数学教学。 因此“函数的单调性”在中学数学内容里占有十分重要的地位。它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

?学情分析】 从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。 从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。 从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。

?教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法: 启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。 探究教学法——引导学生去疑;鼓励学生去探; 激励学生去思,培养学生的创造性思维和批判精神。 合作学习——通过组织小组讨论达到探究、归纳的目的。 【教学手段】计算机、投影仪.

?教学过程】 一、创设情境,引入课题(利用电脑展示) 1. 如图为某市一天内的气温变化图: (1)观察这个气温变化图,说出气温在这一天内的变化情况. (2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征? 引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到; (2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低. 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律, 是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:股票价格、水位变化、心电图等等 春兰股份线性图 . 水位变化图 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

?设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义. 1.借助图象,直观感知 问题1:分别作出函数 的图象,并且观察自变量 变化时,函数值有什么变化规律?(学生自己动手画,然后电脑显示下图) 预案:生:函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. 师:函数 的图像变化规律 生:在y轴的的左侧y随x的增大而减小.在y轴的的右侧y随x的增大而增大。 师:我们学过区间的表示方法,如何用区间的概念来表述图像的变化规律 生:在 上 y随x的增大而增大,在 上y随x的增大而减小. 师:这样表述就比较严密了,很好。由上面的讨论可知,函数的单调性与自变量的范围有关,一个函数并不一定在整个正义域内是单调函数,但在定义城的某个子集上可以是单调函数。 (3)函数 的图像变化规律如何。

生:(1)定义域中的减函数。 (2)在 上 y随x的增大而减小,在 上y随x的增大而减小. 师:对于两种答案,哪一种是正确的,为什么?学生分组讨论。从定义域,图像的角度考虑,也可以举反例 引导学生进行分类描述 (增函数、减函数).并引导学生用区间明确描述函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在该区间上为增函数;如果函数 在某个区间上随自变量x的增大,y越来越小,我们说函数 在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.

?设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数 的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论) 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

?设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在 为增函数? 预案: 生: 在给定区间内取两个数,例如1和2,因为12t;22,所以 在 为增函数. 生:仅仅两个数的大小关系不能说明函数y=x2在区间[0,+∞)上为单调递增函数,应该举出无数个。 由于很多学生不能分清“无数”和“所有”的区别,所以许多学生对学生2的说法表示赞同。

生:函数 )无数个如(2)中的实数,显然f(x)也随x的增大而增大,是不是也可以说函数 在区间 上是增函数?可这与图象矛盾啊? 师:“无数个”能不能代表“所有”呢?比如:2、3、4、5……有无数个自然数都比 大,那我们能不能说所有的自然数都比 大呢?所以具体值取得再多,也不能代表所有的,思考如何体现区间上的所有值。引导学生利用字母表示数。 生:任取 且 ,因为 ,即 ,所以 在为增函数. 旧教材的定义在这里就可以归纳出来,但是人教b版新教材使用了自变量的增量和函数值的增量来表述,并为以后学习利用导数判断函数的单调性做准备,所以需进一步引导学生利用增量来定义函数的单调性。

(5)仿(4) 且 ,由图象可知,即给自变量一个增量 ,,函数值的增量 所以 在 为增函数。 对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量 进一步寻求自变量的增量与函数值的增量之间的变化规律,判断函数单调性。注意这里的“都有”是对应于“任意”的。

?设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫. 3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

(1)板书定义 设函数 的定义域为a,区间m a,如果取区间m中的任意两个值 ,当改变量 时,都有 ,那么就称函数 在区间m上是增函数,如图(1)当改变量 时,都有 ,那么就称函数 在区间m上是减函数,如图(2)

(2)巩固概念(以下问题老师提问后,学生适当讨论后回答) 师:根据函数的单调性的定义思考:由f(x)是增(减)函数且f(x1)x2), 生:能。因为定义中区间m中的任意两个值 若 , 都有 。 师:我们来比较一下增函数与减函数定义中 的符号规范

高一数学幂函数教案篇5

第二十四教时

教材:倍角公式,推导和差化积及积化和差公式

目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

过程:

一、 复习倍角公式、半角公式和万能公式的推导过程:

例一、 已知 , ,tan = ,tan = ,求2 +

(《教学与测试》p115 例三)

解:

又∵tan2 0,tan 0 ,

2 + =

例二、 已知sin cos = , ,求 和tan的值

解:∵sin cos =

化简得:

∵ 即

二、 积化和差公式的推导

sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

例三、 求证:sin3sin3 + cos3cos3 = cos32

证:左边 = (sin3sin)sin2 + (cos3cos)cos2

= (cos4 cos2)sin2 + (cos4 + cos2)cos2

= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

= cos4cos2 + cos2 = cos2(cos4 + 1)

= cos22cos22 = cos32 = 右边

原式得证

三、 和差化积公式的推导

若令 + = , = ,则 , 代入得:

这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

例四、 已知cos cos = ,sin sin = ,求sin( + )的值

解:∵cos cos = , ①

sin sin = , ②

四、 小结:和差化积,积化和差

五、 作业:《课课练》p3637 例题推荐 13

p3839 例题推荐 13

p40 例题推荐 13

高一数学幂函数教案篇6

一、本课数学内容的本质、地位、作用分析

普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

二、教学目标分析

本节内容包含三大知识点:

一、函数零点的定义;

二、方程的根与函数零点的等价关系;

三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:

1.结合方程根的几何意义,理解函数零点的定义;

2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.

本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:

1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;

3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

由于本节课将以教师引导,学生探究为主体形式,故设定本节课的情感、态度与价值观目标如下:

1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

3.使学生感受学习、探索发现的乐趣与成功感。

三、教学问题诊断

学生具备的认知基础:

1.基本初等函数的图象和性质;

2.一元二次方程的根和相应函数图象与x轴的联系;

3.将数与形相结合转化的意识。

学生欠缺的实际能力:

1.主动应用数形结合思想解决问题的意识还不强;

2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;

3.从直观到抽象的概括总结能力还不够;

4.概念的内涵与外延的探究意识有待提高。

对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。

教材是通过由直观到抽象的过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。

教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。

四、本节课的教法特点以及预期效果分析

本节课教法的几大特点总结如下:

1.以问题为主线贯穿始终;

2.精心设置引导性的语言放手让学生探究;

3.注重在引导学生探究问题解法的`过程中渗透数学思想;

4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。

由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;

由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;

因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;

因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。

高一数学幂函数教案篇7

教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

教学重点:

用指数函数模型解决实际问题。

教学难点:

指数函数模型的建构。

教学过程:

一、情境创设

1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为万元,后年的产值为万元.若设x年后实现产值翻两番,则得方程。

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

三、数学应用

例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中oa是线段,曲线abc是函数=at的图象。试根据图象,求出函数=f(t)的解析式。

例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

(1)写出本利和随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

例52000~2002年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。

高一数学幂函数教案7篇相关文章:

西师版二年级数学教案6篇

小学数学人教版教案优质6篇

小学数学一年级教案参考6篇

幼儿大班数学1到10的教案8篇

幼儿大班数学1到10的教案优质6篇

一年级数学分类与整理教案5篇

人教版小学二年级数学下册教案8篇

小学数学一年级教案8篇

小学数学四年级教案参考8篇

小学数学认位置教案8篇

高一数学幂函数教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
88299