分数混合运算一教案精选6篇

时间:
Surplus
分享
下载本文

佳作的教案应结合实际生活情境,以增强学生的学习实用性和应用能力,教案应关注家庭与学校的合作,以形成教育合力,共同促进学生成长,下面是大学生范文网小编为您分享的分数混合运算一教案精选6篇,感谢您的参阅。

分数混合运算一教案精选6篇

分数混合运算一教案篇1

一、教材分析:

今天我说课的内容分数四则混合运算是青教版五年级上册第八单元中国的世界遗产——分数四则混合运算的第一课时,本单元是学生在熟悉了整数、小数四则混合运算的运算顺序,分数的意义和四则运算的基础上学习的,是继续学习百分数、比和比例等知识的重要基础,本节课是本单元的起始课,为学习稍复杂的有关分数的问题打下基础。

目标定位:

1、能结合具体情景,理解和掌握分数四则混合运算顺序,并能够正确计算。

2、在解决问题的过程中,提高学生分析问题的能力。

3、让学生领略中国的古老和文明,激发学生学习数学的乐趣。

重点、难点:

在解决问题的过程中,理解和掌握分数四则混合运算的顺序,并能正确计算。

二、学情分析:

五年级的学生已经有了整数相关的知识基础,并且已经有了分析相关问题的能力,利用类推迁移,学生完全有能力解决本节课所设计的问题,理解和掌握分数四则混合运算的顺序。

三、教法:

针对以上的分析,结合本课时内容,整个教学思路是这样的:

1、充分体现算与用的关系,体现数学与生活的联系。本课努力贯彻“以学生为主体”的教学思想,从学生已有的是认知基础和生活经验出发,充分利用教材中创设的情境,引导学生自主提出问题解决问题,让学生在解决问题的过程中,把解决问题和计算有机地结合起来,结合生活实际理解掌握分数混合运算的顺序,并在解决实际问题的基础上体会数学的应用价值。

2、充分发挥学生的主体地位,培养学生的问题意识,引导学生积极主动地探索解决问题的思路与方法,注重学生思维方法的渗透。

学生独立提出问题,独立思考,独立解决,然后在全班交流。不同的孩子有不同的解题思路。学生运用自己的方法解决问题,会对解决数学问题有深切的体验,会取得学习数学的经验。在这个过程中关注学生能否清楚表达自己的解题思路,能否对自己的列式做出解释,培养学生数学思维的发展,提高学生的数学思维能力。

3、练习的设计关注学生的个人差异。

关注每个孩子的能力、基础,针对不同层次的孩子,注重学生的差异,对同样的.练习,做不同的要求,使不同程度的孩子都有成功的学习体验。

4、注重培养学生的迁移类推能力。

由于学生已经学习了整数的四则混合运算,并且已经有了解决简单的分数乘除法问题的能力,所以教学中引导学生在已有知识基础上进行类推。这样有利于培养学生的迁移能力,调动学生学习的积极性和主动性。

四、教具、学具准备:

多媒体、课件

五、教学过程:

1、创设情境

本课时是以中国的世界遗产为题材,展现了中国的悠久历史和灿烂文化,为了让学生对世界文化遗产有更深的了解,课前布置让学生查阅相关的资料,上课前交流,并用课件播放相关图片让学生欣赏,不仅让学生借此领略中国的古老和文明,激发学生的学习兴趣,并且随后交流关于故宫有多大的一些信息,以“想不想知道故宫的面积”这一问题,激发学生的探究欲望,吸引学生积极主动地投入到解决问题的探索活动中来。

2、提出问题解决问题

在学生急切地想知道故宫的面积时,师出示相关信息,让学生阅读信息,并且独立思考,引导学生分析,“要解决这个问题,哪条信息最关键?和谁有着怎样的关系?”在此基础上让学生独立解决,更好地体现和发挥学生的主体作用,使之获得个体发展。

汇报交流时,注重学生能否完整地说自己的思路“先求什么,再求什么?”不仅训练学生分析问题的思维,而且在解决问题的过程中体验到运算顺序,突出了重点。学生解决了这个问题,师要照应前面的问题,适时评价:同学们很棒,自己求出了故宫的面积,下次再到故宫,你都可以当一个小导游了。让学生不仅有成功的体验,而且体会数学与生活的密切联系。在此基础上,引导学生观察算式特点,总结板书课题,让学生自主提出问题,并通过知识类推,同位交流,发现分数四则混合运算顺序与整数相同,最后及时出示两道题练习巩固。在这个过程中,不仅注重思维方法的训练,同时通过自主思索与同位交流相结合的方式,培养学生的迁移类推能力。

分数混合运算一教案篇2

分数四则混合运算教案

【教学过程】:

一、复习:

1、一个数除以一个不等于0的数应怎样计算?

2、计算:

24÷5/6 2/3÷3/4 5/7÷25/14

二、探究新知:

1、教学例4(1):混合运算应用题

小红用长8米的'彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?

(1)讨论问题

①你从题中获得了哪些信息?

②要求小红还剩几朵花,先应求什么?

③怎样列式?

(2)讨论要求:

①先在小组内讨论问题

②独立列算式,并在小组内交流

(3)汇报讨论结果并板书

8÷2/3-4

=8×3/2-4

=12-4

=8(朵)

答:小红还剩8朵花。

2、教学例四(2)四则混合运算题

(2)计算1/5÷(2/3+1/5)×15

①先按运算顺序计算出题目的得数

③在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:

1/5÷[(2/3+1/5)×15]

(1)先议一议运算顺序,再独立计算,并在小组内交流。

(2)议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?

(3)在学生充分讨论归纳后,教师板书:

先算小括号里面的,再算中括号里面的。

三、课堂练习: 四、教科书第34页“做一做” 五、板书设计:

分数四则混合运算

8÷2/3-4 计算:1/5÷(2/3+1/5)×15

=8×3/2-4 计算:1/5÷[(2/3+1/5)×15]

=12-4 =1/5÷[(10/15+3/15)×15]

=8(朵) =1/5÷[13/15×15]

=1/5÷13

答:小红还剩8朵花。 =1/65

一个算式里,如果既有小括号又有中括号,

要先算小括号里面的,再算中括号里面的。

第四课时 混合运算练习题

练习内容:教科书第36页内容

练习过程:

1、由学生独立完成

2、在小组内探讨交流

3、汇报应用题解题思路(在全班内)

分数混合运算一教案篇3

教学目标:

1、使学生结合解决实际问题的过程,掌握分数四则混合运算的运算顺序,能按运算顺序正确计算;了解整数运算律在分数计算中同样适用,并能运用运算律进行有关分数的简便计算。

2、使学生在分数四则混合运算的过程中,进一步提高运算能力,能灵活运用运算律和运算性质,选择简便合理的运算方法;培养观察、比较和概括等思维能力。

3、使学生在数学学习过程中,进一步体会数学学习的严谨性和数学结论的科学性,养成认真计算、自觉检验、有错即改的良好学习习惯。

教学重点:

分数四则混合运算的运算顺序。

教学难点:

运用运算律和运算性质进行简便计算。

教学过程:

一、引入新课

1、口算练习。

直接写出得数。集体交流,选择几题让学生说说算法。

2、出示例1

引导:同学们,这两个物品你认识吗?(中国结)你从主题图中知道了哪些条件,要求什么问题?能列出综合算式吗?学生独立完成。集体交流,让说说是怎么列式的,并且是怎样想的。

板书算式:2/5×18+3/5×18(2/5+3/5)×18

3、揭示:这两个含有分数的算式既有乘法又有加法,这就是我们今天要学习的分数四则混合运算。(板书课题)

二、学习新知

1、尝试计算,认识运算顺序

引导:这两道算式各是先求的什么?你能计算出得数吗?

学生独立计算,指名两人板演

交流:2/5×18+3/5×18,你先算的什么运算?乘法算出的结果表示什么?

说明:先算小中国结和大中国结各用彩绳多少米,也就是先算这个算式中的乘法,这两步乘法可以同时计算脱式。

提问:(2/5+3/5)×18先算什么呢?先算的'是哪个数量?

说明:先算两种中国结各做一个要用彩绳多少米,也就是先算括号里的

2、小结运算顺序。

提问:通过这两题的计算,你认为分数四则混合运算可以怎么算呢?

小结:分数四则混合运算的运算顺序和以前学过的整数运算顺序相同这里有乘法和加法,先算乘法,再算加法;有小括号的先算小括号里的。

3、明确运算律。

提问:比较解决例1的两种不同解法,这两种解法之间有什么联系?

如果让你选择算法,你喜欢哪种算法?为什么?

通过讨论让学生发现:整数运算律同样适用于分数的运算。根据运算律,可以使一些计算简便。

三、巩固练习

1、做“练一练”第1题。

提问:这两题的运算顺序是怎样的?同桌相互说一说。

提问:在进行分数四则混合运算时,你认为要注意些什么?

指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算再如第二小题,分数连加时可以同时通分

2、做“练一练”第2题

学生独立计算,指名板演。集体交流,说说哪里用了简便算法,分别是怎样想的。小结:简便运算主要应观察算式的特点,看能不能运用运算律或运算性质使计算简便。有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或规律简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。

3、做练习十二第3题。

让学生独立练习,指名四人板演。

交流:每道题是哪里用了简便计算,依据是什么?

四、全课总结

提问:这节课我们学习了分数四则混合运算,你有哪些收获?你觉得在计算分数四则混合运算时,有什么需要提醒大家注意的?

五、布置作业。

分数混合运算一教案篇4

本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。

第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。

第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。

教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。

第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。

一、 一题两解既含运算顺序,又含运算律的内容。

例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的`米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。

在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。

比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。

应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。

二、 数形结合教学较复杂问题的数量关系。

例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。

两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。

练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。

分数混合运算一教案篇5

教学目标

1.使学生掌握分数四则混合运算的运算顺序,并能正确计算分数四则混合式题.

2.提高学生的逻辑推理能力和计算能力.

3.培养学生认真计算、检验的良好学习习惯.

教学重点

掌握分数四则混合运算的运算顺序.

教学难点

培养学生良好的计算、检验的学习习惯,提高计算的正确率.

教学过程

一、复习引新

(一)口算

(二)说出下列各题的运算顺序.

169-72235-〔2.34(7.2-5)〕

1.教师提问:整数四则混合运算的顺序是什么?

(1)一个算式里,如果只含有同一级运算,按照从左往右的顺序进行计算.

(2)一个算式里,如果含有两级运算,要先算第二级运算,再算第一级运算.

(3)一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的.

2.教师谈话引入:分数四则混合运算的顺序是怎样的呢?今天我们一起学习分数四则混合运算.

板书课题:分数四则混合运算.

二、讲授新课

(一)教学例1

例1.(课件演示:分数混合运算例1)

1.教师提问:这个算式里含有几级运算?应该先算什么?再算什么?

2.学生尝试解答.

3.集体订正.

(二)教学例2

例2.(课件演示:分数混合运算例2)

1.请学生分组说一说这道题的'运算顺序.

计算时,要先算小括号里面的,再算中括号里面的最后算括号外边的.

2.学生独立解答 =3

(三)总结归纳

分数四则混合运算的顺序与整数四则混合运算的顺序相同,我们可能觉得不难,但却很容易算错,所以我们要养成好的计算习惯:要审清运算符号,确定好运算顺序,不丢数、不抄错数,认真计算每一步.

分数混合运算一教案篇6

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的'自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)362+15(2)56+73(3)15(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1)+(2)-(3)-(4)+

2、复习整数乘法的运算定律

(1)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25740.36101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示:,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示:+,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为4和4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

p14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课

分数混合运算一教案精选6篇相关文章:

双十一的利与弊演讲稿精选6篇

一年级语文教案精选8篇

一年级安全教案5篇

小学数学一年级教案8篇

学生一学期总结精选5篇

一年级下册音乐教案8篇

小学一年级教案最新8篇

小学一年级教案推荐8篇

小学一年级教案通用8篇

小学一年级教案模板8篇

分数混合运算一教案精选6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
140352