奇函数的教案推荐7篇

时间:
Surplus
分享
下载本文

通过制定教案,激发了我对创新教学的无限热情与追求,在教学过程中,老师们常常需要准备详细的教案,以确保课程的顺利进行,大学生范文网小编今天就为您带来了奇函数的教案推荐7篇,相信一定会对你有所帮助。

奇函数的教案推荐7篇

奇函数的教案篇1

学习目标:

(1)理解函数的概念

(2)会用集合与对应语言来刻画函数,

(3)了解构成函数的要素。

重点:

函数概念的理解

难点:

函数符号y=f(x)的理解

知识梳理:

自学课本p29—p31,填充以下空格。

1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。

2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要

?

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

① ;② 。

5、设a, b是两个实数,且a

(1)满足不等式 的实数x的集合叫做闭区间,记作 。

(2)满足不等式a

(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

分别满足x≥a,x>a,x≤a,x

其中实数a, b表示区间的两端点。

完成课本p33,练习a 1、2;练习b 1、2、3。

例题解析

题型一:函数的概念

例1:下图中可表示函数y=f(x)的图像的只可能是( )

练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。

题型二:相同函数的判断问题

例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

④ 与 其中表示同一函数的是( )

a. ② ③ b. ② ④ c. ① ④ d. ④

练习:已知下列四组函数,表示同一函数的是( )

a. 和 b. 和

c. 和 d. 和

题型三:函数的定义域和值域问题

例3:求函数f(x)= 的定义域

练习:课本p33练习a组 4.

例4:求函数 , ,在0,1,2处的函数值和值域。

当堂检测

1、下列各组函数中,表示同一个函数的是( a )

a、 b、

c、 d、

2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )

a、5 b、-5 c、6 d、-6

3、给出下列四个命题:

① 函数就是两个数集之间的对应关系;

② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

③ 因为 的函数值不随 的变化而变化,所以 不是函数;

④ 定义域和对应关系确定后,函数的值域也就确定了.

其中正确的有( b )

a. 1 个 b. 2 个 c. 3个 d. 4 个

4、下列函数完全相同的是 ( d )

a. , b. ,

c. , d. ,

5、在下列四个图形中,不能表示函数的图象的是 ( b )

6、设 ,则 等于 ( d )

a. b. c. 1 d.0

7、已知函数 ,求 的值.( )

奇函数的教案篇2

一、教材分析

1、教材的地位和作用

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

2、教学的重点和难点

教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

教学难点:掌握从函数的性质推断图象的方法。

二、目标分析

按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

三、教法学法分析

遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的.认知结构,进而体现出教学过程中教师与学生的双主体作用。

四、教学过程分析

根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题

师生互动、探究新知

独立探究,巩固方法

强化训练,加深理解

小结归纳,拓展深化

布置作业,提高升华

环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数

的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.

在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。

教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.

通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.

以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

奇函数的教案篇3

二次函数的性质与图像

【学习目标】

1、使学生掌握研究二次函数的一般方法——配方法;

2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;

3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。

【自主学习】

二次函数的性质与图像

1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。

2)函数 的图像和性质:

(1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。

(2)函数 为 (填“奇函数”或“偶函数”)。

(3)函数 的图像的对称轴为 。

3)二次函数 的性质

(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。

(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。

(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。

跟踪1、试述二次函数 的性质,并作出它的图像。

跟踪2、研讨二次函数 的性质和图像。

跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?

跟踪4、课本p60练习b

1、

【归纳总结】

研究二次函数的图像与性质的思路是什么?

函数二次函数 (a、b、c是常数,a≠0)

图像a>0 a

性质

?典例示范】

例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。

例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。

(1)函数 , 的图像的顶点是(4, );

(2)函数 , 图像的顶点是 。

奇函数的教案篇4

教学目标:

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。

教学程序:

一、导入:

1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

2 、u=ir,当u=220v时,

(1)你能用含 r的代数式 表示i吗?

(2)利用写出的关系式完成下表:

r(Ω) 20 40 60 80 100

i(a)

当r越来越大时,i怎样 变化?

当r越来越小呢?

( 3)变量i是r的函数吗?为什么?

答:① i = ur

② 当r越来越大时,i越来越小,当r越来越小时,i越来越大。

③变量i是r的函数 。当给定一 个r的值时,相应地就确定了一个i值,因此i是r的函数。

二、新授:

1、反比例函数的概念

一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。

反比例函数的自变量x 不能为零。

2、做一做

一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?

解:y=20x ,是反比例函数。

三、课堂练习

p133,12

四、作业:

p133,习题5.1 1、2题

奇函数的教案篇5

一、教学目标

①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义、能分清实例中的常量与变量,了解自变量与函数的意义、

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力、

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情、在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心、

二、教学重点与难点

重点:函数概念的形成过程、

难点:正确理解函数的概念、

三、教学准备

每个小组一副弹簧秤和挂件,一根绳子、

四、教学设计

(一)提出问题:

1、汽车以60千米/时的速度匀速行驶、行驶里程为s千米,行驶时间为t小时、先填写下面的表,再试着用含t的式子表示s:

t(小时) 1 2 3 4 5

s(千米)

2、已知每张电影票的售价为10元、如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

3、要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积s的式子表示圆半径r?

注:(1)让学生充分发表意见,然后教师进行点评、

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验、

(二)动手实验

1、在一根弹簧秤上悬挂重物,改变并记录重物的质量,

观察并记录弹簧长度的变化,填入下表:

悬挂重物的质量m(kg)

弹簧长度l(cm)

如果弹簧原长10cm,每1kg重物使弹簧伸长0、5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

2、用10dm长的绳子围成矩形、试改变矩形的长,观察矩形的'面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)、设矩形的长为xdm,面积为sdm2,怎样用含x的式子表示s?

注:分组进行实验活动,然后各组选派代表汇报、

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息、

五、探究新知

(一)变量与常量的概念

1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程、其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的在一个变化过程中,数值发生变化的量,我们称之为变量、也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量、

2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量、

3、举出一些变化的实例,指出其中的变量和常量、

注:分组活动、先独立思考,然后组内交流并作记录,最后各组选派代表汇报、

培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力、

(二)函数的概念

1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

师生分析得出:上面的每个问题和实验中的两个变量互相联系、当其中一个变量取定一个值时,另一个变量就有惟一确定的值、

2、分组讨论教科书p、7 “观察”中的两个问题、

注:使学生加深对各种表示函数关系的表达方式的印象、

3、一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数、如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值、例如在问题1中,时间t是自变量,里程s是t的函数、t=1时,其函数值s为60,t=2时,其函数值s为120、

同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

在人口统计表中,年份x是自变量,人口数y是x的函数、当x=1999时,函数值y=12、52、

六、巩固新知

下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

1、右图是北京某日温度变化图

2、如图,已知菱形abcd的对角线ac长为4,bd的长在变化,设bd的长为x,则菱形的面积为y= ×4×x

3、国内平信邮资(外埠,100克内)简表:

信件质量m/克o

邮资y/元o、80 1、60 2、40

注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法、

七、总结归纳

1、常量与变量的概念;

2、函数的定义;

3、函数的三种表示方式、

注:通过总结归纳,完善学生已有的知识结构、

八、布置作业

1、必做题:教科书p、18习题11、1第1题、

2、选做题:教科书p、18习题11、1第2题、

3、备选题:

(1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

③14、15、16日的日平均温度有什么关系?

④点a表示的是哪天的日平均温度?大约是多少度?

⑤说说这一周的日平均温度是怎样变化的

(2)如右图所示,梯形上底的长是x,下底的长是15,高是8、

①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数、

②用表格表示当x从10变到20时(每次增加1),y的相应值、

③当x每增加1时,y如何变化?说说你的理由、

④当x=0时,y等于多少?此时它表示的是什么?

(3)研究表明,土豆的产量与氮肥的施用量有如下关系:

施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量(吨/公顷) 15、18 21、36 25、72 32、29 34、03 39、45 43、15 43、46 40、83 30、75

①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数、

②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由、

④简单说一说氮肥的施用量对土豆产量的影响、

九、设计思想

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃、因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律、遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力、同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题、还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人、

奇函数的教案篇6

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ =(m2-1)2+4(2m2+2)

=m4-2m2+1+8m2+8

=m4+6m2+9

=(m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c

y =0

有两个不等的实数解

∴抛物线与x轴交于两个不同的点.

形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.

设计意图:渗透解析几何的基本思想

使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.

转化成代数语言为:

小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.

第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.

思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.

设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.

⑵m取什么实数时,两交点间距离最短?是多少?

解:设二次函数与x轴的两交点为(x1,0),(x2,0)

解法㈠ 由⑴可知m为任何实数时, 都有△>0

解①

∴ x1+x2=m2-1

x1·x2=-2(m2+1)

∴│x2-x1│=

=

=

=

=m2+3

∴当m =0时,两交点最小距离为3

这里两交点间距离是m的函数

设计意图:培养学生的`问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想

问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.

设x1、x2 为ax2+bx+c =0的两根

可以推出:

还可以理解为顶点到x轴距离最短.

设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.

小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.

解法㈡:用十字相乘法或求根公式法求根.

思考:一元二次方程与二次函数的关系.

思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

练习:

观察函数 的图象,回答:

(1)y>0时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y

小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.

(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8) (元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价 元时利润最大,最大利润为 元

=

=

=

∴ 当 时, 有最大值

(4)设降价 元时利润最大,利润为 元

(其中 )。

化简,得 。

∴ 当 时, 有最大值。

∴ 。

数学教案-二次函数y=ax2+bx+c 的图象

奇函数的教案篇7

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的'积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

奇函数的教案推荐7篇相关文章:

语文园地七教案推荐8篇

小学一年级教案推荐8篇

幼儿安全小班教案推荐8篇

中班语言活动教案推荐8篇

虫和鸟语言教案推荐5篇

谁来了小班教案推荐5篇

星教案反思推荐8篇

光和影小班教案推荐6篇

小班语言水果歌教案推荐6篇

幼儿中秋节教案推荐8篇

奇函数的教案推荐7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
138973