九上数学二次函数教案6篇

时间:
Brave
分享
下载本文

我们需要在教案中注重培养学生的实际应用能力,编写精心的教案可以提高课堂教学的流畅度和连贯性,以下是大学生范文网小编精心为您推荐的九上数学二次函数教案6篇,供大家参考。

九上数学二次函数教案6篇

九上数学二次函数教案篇1

目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

过程:

一、试一试

1.设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

ab长x(m)123456789

bc长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的`关系式,

对于1.,可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

二、提出问题

某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并 回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

5.若设该商品每天的利润为y元,求y与x的函数关系式。

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x (0<x<10)……………………………(1)

将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

y =-100x2+100x+20d (0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

(分别是二次多项式 )

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及p1页的问题2有什么共同特点 ?

让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y= 5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.p3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

九上数学二次函数教案篇2

一、教材分析

本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和at;0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析

本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标

(一)知识与能力目标

1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标

通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标

1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点

1.重点

通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2.难点

二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与 设计说明

本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程

教学环节(注明每个环节预设的时间)

(一)提出问题(约1分钟)

教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

(二)探究新知

1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

学生活动:讨论解决

目的:激发兴趣

2.配方求解顶点坐标和对称轴(约5分钟)

教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

=0.5(x2-12x+36-36+42)

=0.5(x-6)2+3

教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

目的:即加深对本课知识的认知有增强了配方法的应用意识。

3.画出该二次函数图像(约5分钟)

教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

学生活动:学生独立完成。

目的:研究at;0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和at;0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

6.简单应用(约11分钟)

教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

目的:巩固新知

课堂小结(2分钟)

1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

2. 你对本节课有什么感想或疑惑?

布置作业(1分钟)

1. 教科书习题22.1第6,7两题;

2. 《课时练》本节内容。

板书设计

提出问题 画函数图像 学生板演练习

例题配方过程

到顶点式的配方过程 一般式相关知识点

教学反思

在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

我认为优点主要包括:

1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3.板书字体端正,格式清晰明了,突出重点、难点。

4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

九上数学二次函数教案篇3

二次函数的性质与图像

【学习目标】

1、使学生掌握研究二次函数的一般方法——配方法;

2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;

3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。

【自主学习】

二次函数的性质与图像

1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。

2)函数 的图像和性质:

(1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。

(2)函数 为 (填“奇函数”或“偶函数”)。

(3)函数 的图像的对称轴为 。

3)二次函数 的性质

(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。

(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。

(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。

跟踪1、试述二次函数 的性质,并作出它的图像。

跟踪2、研讨二次函数 的性质和图像。

跟踪3、求函数 的'值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?

跟踪4、课本p60练习b

1、

【归纳总结】

研究二次函数的图像与性质的思路是什么?

函数二次函数 (a、b、c是常数,a≠0)

图像a>0 a

性质

?典例示范】

例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。

例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。

(1)函数 , 的图像的顶点是(4, );

(2)函数 , 图像的顶点是 。

九上数学二次函数教案篇4

学习目标:

1、能解释二次函数 的图像的位置关系;

2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。

学习重点与难点:

对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

学习过程:

一、知识准备

本节课的学习的内容是课本p12-p14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?

二、学习内容

1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本p12-p13,作出合理的解释)

x -3 -2 -1

0 1 2 3

类似的:二次函数 的图象与函数 的图象有什么关系?

它的'对称轴、顶点、最值、增减性如何?

2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本p13-p14你的解释是什么?

x

-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6

类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢

三、知识梳理

1、二次函数 图像的形状,位置的关系是:

2、它们的性质是:

四、达标测试

⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。

将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。

将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;

将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。

将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。

2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;

抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.

抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;

抛物线y=-3(x+1)2的顶点是 ;对称轴是 .

3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;

二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。

4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;

将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;

5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .

函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .

6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是a,b两点的横坐标)时,函数值相等,

则当x取x1+x2时,函数值为 ( )

a. a+c b. a-c c. c d. c

7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?

九上数学二次函数教案篇5

1.说教材

本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。

本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。

2.说目标

?知识与能力】:

理解二次函数的意义。

会用描点法画出函数y = ax2的图象。

知道抛物线的有关概念

会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。

?过程与方法】:

1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。

2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。

?情感与态度目标】:

在数学教学中渗透美的教育,让学生感受二次函数图像的对2

称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。

3.说教学方法

教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。

利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。

学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

最后,我来具体谈一谈本节课的教学过程。

4.说教学过程

(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。

(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。

(三)反思概括,方法总结

总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。

(四)作业

课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。

各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!

九上数学二次函数教案篇6

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。

再探索:在抛物线y=x2+4x+3上找一点f,使bce与bcd全等。

再探索:在抛物线y=x2+4x+3上找一点m,使bom与abc相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点a(x1,0)、b(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为c,顶点为p,求 poc的`面积。

2、如图,一个二次函数的图象与直线y= x—1的交点a、b分别在x、y轴上,点c在二次函数图象上,且cbab,cb=ab,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度ab=5cm,拱高oc=0。9cm,线段de表示大桥拱内桥长,de∥ab,如图1,在比例图上,以直线ab为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果de与ab的距离om=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

九上数学二次函数教案6篇相关文章:

初中数学教案优秀教案优秀5篇

初中数学教案优秀教案最新5篇

九上化学老师述职报告6篇

九上科学教学工作计划推荐6篇

九上化学备课组工作计划6篇

个入党申请书二次申请书5篇

第二次天宫课堂心得体会5篇

九上英语教学工作计划精选6篇

小学数学人教版教案8篇

小学数学一年级教案8篇

九上数学二次函数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
124041