只有将教学反思写好,我们才能更好地优化知识,在现阶段的教学结束后,老师们在回顾这段期间的点点滴滴一定都有认真写好教学反思,下面是大学生范文网小编为您分享的式与方程教学反思优质8篇,感谢您的参阅。
式与方程教学反思篇1
列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习
式与方程教学反思篇2
?方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
式与方程教学反思篇3
本节课分式方程的解法部分属于重点,难点为利用分式方程解实际问题。分式方程的解法是解决大多数数学问题的基础公具,应让学生们从思想上认识到它的重要性,解实际问题需正确找到等量关系,构建数学模型,把实际问题转化为数学计算问题,本节课学生对这条教学主线,理解较为清晰。
本节课我采用了启发讲授、合作探究、讲练相结合的教学方式。在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”新课表理念。使学生充分地动口、动脑,参与教学全过程。在教学过程中,为了达到学习目标,强化重点内容并突破学习中的难点,在课堂教学过程中,根据教学目标和学生的具体情况,紧密联系实例,精心设计问题情境,使所有学生既能参与,又有探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验。达到了课堂教学的有效性。在学法指导上,本着“授之以鱼,不如授之以渔”的原则,围绕本节课所学知识,激发学生积极思考,教会学生分析问题的方法,使学生既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,提高分析问题、解决问题的能力。
本节课体现了本人,努力培养具有较高数学素养的一代新人的教育观点,达到了预期的教学效果。
式与方程教学反思篇4
本节课内容选自人教版七上3.2.2章节的《解一元一次方程》,学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。
我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。
列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x-4x=-25-20,变为之前学过的方程类型。
通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为-4x,20从左边移到右边变为-20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。
学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。
练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。
本节课主要存在的问题有:
1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。
2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。
3、课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。点评作业时,应该让学生多说是怎么做的,说出各步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的掌握情况。
“移项”教学反思
本节课的教学内容是移项,学生此前已经学习了等式性质和利用合并同类项解一元一次方程的相关知识。
这一次的备课作了一些新的尝试,在认真看完教参之后,花了一天的时间重新思考:这一课要讲的是什么内容?要解决什么问题?用什么样的方法?有了一个大致的框架之后,才开始动笔写教案,把教学目标定位《七年级数学上册《解一元一次方程——移项》教学反思(2篇)》/p>
为:会运用移项把方程转化成x=a的形式;理解移项的依据;能尝试利用“表示同一个量的两个式子相等”来建立适当的方程。
课后,有这样几点感想:
1、对课中的问题(应用题)讲解比较粗浅,学生并没有达到理解、掌握相应的方法的程度。
2、对移项的讲解不够深入,应该用不同的颜色来突出某一项移动前后的变化,而且,以后可以尝试用以下的方法帮助学生分辨是否进行了移项,是否需要变号,即,以等号(=)为界线,移项则相当于“越界”,凡是“越界”的都需要变号,没有“越界”的则不需要变号。
3x+20=4x-25
3x-4x=-25-20
界线
我觉得应该能找到一种效果更好的方法帮助学生理解移项。
3、课上展示学生作业的`机会太少了。这一点,毫无疑问是我课前准备不周到,原来是想请学生写在黑板上的,上课时才发现,黑板根本不够用。在以后的课前准备中,要把展示学生作业作为重要的一个内容来加以考虑。
4、关于板书,课前一直在想,板书是突出解方程的过程还是突出运用一元一次方程解应用题的过程,最终在上课的时候选择了前者,理由是,运用一元一次方程解应用题的过程不应该作为本节课教学的中点来加以强调,在之前的教学中已经强调过了。但是后来还是觉得有些不妥,毕竟,在学生的作业过程中,完整的解题过程是相当重要的,而对于聋生来说,不断的重复有助于学生更好地记住这些细节。
5、在后来的交流中,发现自己准备的练习没有形成层层递进的梯度,没有为学生设计一些有关移项的专项练习,这在以后的备课中要引起重视,即在教学过程中,应该设计一些帮助学生突破难点的专项练习。使课堂练习更有层次感,能满足更多学生的需求。
6、还有一点也是在课前比较纠结的,即课中小结与末尾的小结的关系,舍不下课中的小结,这对接下来的练习是有一定的帮助的,但是如果过分强调课中小结,会有一种本末倒置的感觉。最后选择了需求,放弃了感觉,同时也忽视了必要的修饰,其实,课中小结确实是必要的,但是可以简单一些,而末尾小结的色彩可以重一些,也算是给这堂课画上一个句号吧,这一点在备课的时候没有仔细斟酌,颇为遗憾。
式与方程教学反思篇5
本节课从两个学生比较熟悉的实际问题入手,通过对所列方程的观察,并与一元一次方程类比,自然导出一元二次方程的意义及其相关的一些概念,既渗透了类比的数学思想,又加强了新旧知识间的联系,有助于学生对新知识的理解与接受,降低了知识点的难度,减轻了学生的学习负担。
计过程中,不过于强调形式化的定义,也不要求学生死记硬背,只要能辨认一些概念即可,最后出示的一个实际问题,目的让学生进一步体会一元二次方程学习的重要性及实际价值,同时也为下一节一元二次方程的解法及应用的学习设置悬念、埋下伏笔,激发学生的求知欲望,培养学生自主探究的习惯与能力。
本节课教学,注重知识与实际的联系,让学生认识到学习数学的重要性,注重学生的个性发展,采取自主探究与合作交流的学习方法,让学生经历思考、讨论、合作、交流的过程,使学生始终处于学习的主体地位,培养学生与人交流、与人合作的能力。从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感、态度与价值观等多方面得到发展.
分层作业中必做题巩固本节课的基本要求,体现了“人人都能获得必要的数学”;选做题密切联系生活,体现“人人学有价值的'数学;不同的人在数学上得到不同的发展”,创设了具有实践性、开放性的问题情境,启发学生思考现实生活中可能蕴涵某些数学知识的现象,初步学会“用数学”的意识。通过训练,在日常生活中,学生就会用数学的眼光观察、探究现实世界,发现问题,通过自己的思考解决问题。
式与方程教学反思篇6
?方程的意义》本课是人教版五年级上册第五单元的起始课,属于概念教学。对于概念的学习来说,如何理解定义是重要的,方程的意义不在于方程概念本身,而是方程更为丰富的内涵。就本节课反思如下:
1.埋新知伏笔
等式的认识是学习方程的一个前概念,因此,在认识方程之前,我先安排了一个关于“等号”意义话题的讨论。出示如:2+3=57+2=4+5,这两个题中“=”分别表示什么意思?2+3=5这个题中“=”表示计算结果,而7+2=4+5表示是一种关系,让学生对等号的认识实现一种转变,从而为建立方程埋下伏笔,也体现了思考问题着眼点的变化。但在实际教学中,由于我临时改变思路,根据课件天平左盘放着20千克和50千克的物体,右盘放着70千克的物体,学生列出算式20+50=70,我就问这个等号表示什么意思?由于这个算式有了天平具体的直观形象,学生一下子过渡到等号表示一种关系。我想让学生体会等号从表示一种过程过渡到表示一种关系,但课后我反思没有必要,以前学生已经知道等号表示一种过程,本节课主要让学生认识到等号还表示一种关系,为建立方程打下基础,所以,当学生已经在天平直观形象中认识到等号表示一种关系,就可以往下进行。所以,这个环节浪费了时间,同时我认识到课前每个环节都要慎思。
2.导概念实质。
新授环节是本节课的核心环节。我让学生以讲故事的形式生动讲解每幅图的意思,让学生经历认识方程的过程,力求让学生在愉悦的氛围里深刻的思考中,体验方程从现实生活中抽象出来。从而列出方程并认识方程。但我认为这还不够,还要对方程的内涵和外延要有更深层次的理解。于是我安排了以下4道习题:
第1题:下面这些式子是方程吗?
x×2-5=100y-2=35()+3=5苹果+50=300
通过这些习题的训练,让学生明白方程中的未知数可以是任何字母,可以是图形,也可以是物体或者画括号等。让学生体会到其实方程在一年级就已经悄悄地来到了我们的身边,和我们已经是老朋友了,只是在一年级我们没有给出它名字,()+3=5就是方程的雏形。
课后我反思这一环节应该增加一些不是方程的习题,如:2x-3>62x+9让学生在各种形式的式子中辨别方程会更好些。
第2题,出示天平图,左盘放着一个160克的苹果和一个重x的梨,右盘放着240克砝码,你能列出方程吗?很多学生列的方程是160+x=240,我就出示240-160=x这个式子是方程吗?让学生在思辨中明晰,它只有方程的形式而没有方程的实质,进一步明白方程的定义中“含有”未知数指的就是未知数要与已知数参加列式运算,从而进一步理解方程的意义。
第3题,出示了天平图,左盘放着250克砝码,右盘放着一个重a克和b克的物体,让学生列方程。通过此题的训练,学生知道了方程中的未知数可以不只是一个,可以是两个或者更多个。方程的'内涵和外延逐渐浮出水面。
课后我反思,通过此题的训练,也应该让学生明白不同的数用不同的未知数表示。
第4题,一瓶800克果汁正好倒满5小杯和容量300克的一大杯,现在没有天平还有方程吗?
生1:800=300+5x
生2:800=300+y
师;为了不让别人产生误会,要写上一句话,写清x、y分别表示什么。
这样为以后学习列方程解决问题打下基础,会减少漏写设句的几率。也让学生明白,没有天平要想列出方程,要在已知数与未知数之间建立起等量关系。
本节课我以等式入手建立方程的概念,以判断方程为依托,让学生进一步理解方程的意义,以解决问题为抓手,让学生产生矛盾冲突,深刻体会“含有”未知数的真正含义,从而理解方程的意义,在层层递进的练习中加深对方程意义的理解。整个教学过程为学生提供了丰富的感性材料,使学生在一种思辨的状态中体验到方程是表达等量关系的数学模型,又为学生的后续学习列方程解决实际问题做了很好的铺垫。
式与方程教学反思篇7
我不惜用许多时间向同学们介绍了中国共产党诞生的经过:“中国共产党是1921年7月诞生的。当时,全国只有五十多个党员,有十二个代表参加了在上海举行的第一次代表大会。在开会过了3天时,由于受到了敌人的注意,为了安全,转移到嘉兴南湖的一只游船上继续举行了2天的会议,正式成立了中国共产党。这就是‘七月的星火,南湖的航船’一句的来历。‘星火’是说火星,火小的意思,‘星星之火,可以燎原’。当时党的力量很小很小,比喻为‘星火’非常恰当。而‘航船’即指那只开会的游船,又指从此开始,中国革命在中国共产党的领导下,乘风破浪,胜利前进。”
学生恍然大悟。从语文的角度来说,也是一个很好的启示。
有人问:“为什么党的生日是7月1日呢?”
现在,又回过头来讲题目,“‘中华少年’与‘七月的星火,南湖的航船’有关系吗?”
在老师指导下,大部分学生明白了:中华少年即可指的是我们新一代的少年儿童,又可指我们的祖国。在历史的长河中,中国共产党诞生了几十年,还是和少年一样充满生机。同时说明我们的祖国发展前程光明,一定会蒸蒸日上。
一个问题,竟然引出了这样一段学习经过。可见教学素材随时都会出现,如果我们教师用心留意,注意学生的课堂发言和提问,适当加以利用引导,肯定会上出学生欢迎,自己得意的生动之课。
式与方程教学反思篇8
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的.概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
式与方程教学反思优质8篇相关文章: