数学10的教案通用6篇

时间:
Monody
分享
下载本文

在教案中,教师要合理安排教学时间,确保课程顺利进行,教案的灵活性使得教师能够根据课堂情况及时调整教学策略,大学生范文网小编今天就为您带来了数学10的教案通用6篇,相信一定会对你有所帮助。

数学10的教案通用6篇

数学10的教案篇1

教材分析

1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。

2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。

学情分析

1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。

2、学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。

3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。

教学目标

1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。

2、掌握解方程的步骤和书写格式。

3、提高学生分析问题并用数学知识解决问题的能力。

4、培养学生进行数学探究的.能力及合作意识。

教学重点和难点

1、本节课的重点是:根据等式的性质解方程。

2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。

教学过程

一、复习导入:

1、什么叫方程?什么叫方程的解?什么叫解方程?

2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?

等式这些规律在方程中同样适用吗?

今天我们就学习如何利用等式保持不变的规律来解方程。

二、探究新知:

1、电脑出示课件例1。

2、从图中可以获取哪些信息?图中表示了什么样的等量关系?

要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?

3、探究怎样解方程。

利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?

(让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)

4、知识迁移。

把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?

(方程两边同时减去一个3,左右两边仍然相等。)

板书+3—3=9—3

x=6

5、追问:左右两边同时减去的为什么是3,而不是其它数呢?

(因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)

6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)

8、学生练习:解方程(x+21=32 x+41=50)

9、学生讨论交流:解x+a=b这类方程的思路是什么?

10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?

11、学生尝试解方程:x—3=9

12、学生讨论交流:解x—a=b这类方程的思路是什么?

13、小结:解x+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)

三、巩固练习:

1、填一填(出示课件)。

使学生进一步加深理解和运用等式不变规律1解决问题实际问题。

2、书上“做一做”第1题(1)题

3、巩固尝试:解方程(出示课件)。

让学生独立完成会用等式不变规律1解方程,强调验算。

四、课堂总结:

通过这节课的学习,你都有哪些收获?

五、拓展活动:

利用课余时间小组内探究像32—x=10这类方程可以怎样解?

六、作业设计:

练习十一第5题一二行,第6题一行。

数学10的教案篇2

一. 教学目标:

(一)知识与技能:

1.借助实物、图形,进一步认识整体与部分的关系。

2.通过折、画等操作活动,初步认识分数——几分之一,能正确读写几分之一。

3.会用几分之一表示图形中涂色部分的大小。

(二)过程与方法:

1.通过动手操作、合作交流,理解几分之一的含义,经历建立分数概念的过程。

2.借助认识几分之一,培养数学思考、语言表达与动手操作能力。

(三)情感、态度与价值观:

在操作、探究“几分之一”的过程中,获得积极的情感体验,探索意识、创新意识得到发展。

教学重点:初步认识几分之一的含义。

教学难点:解分数产生的意义,怎样的“部分”能用几分之一表示。初步认识几分之一的含义。

二.制定依据:

1. 教材分析 从整数到分数,是数域的一次扩展,也是学生数概念学习的一次飞跃。“认识几分之一”是三年级第二学期“分数初步认识”中的一个内容。这个概念对于学生学好分数知识是个前提条件和关键。

分数来源于等分活动,教学中,让学生在具体的情况中体验到当把一个整体的物体平均分后,没办法用整数来表示,从而产生了分数的学习需求。从具体情境中对1/2的初步认识,演绎到几分之一的认识。让学生通过操作、画图、语言来表达自己对于几分之一的含义理解。

2. 学生分析 在学习“认识几分之一”前,学生已学习了“整体与部分”的相关知识,并有一定的“平均分”的经验。同时,也有学生知道分数,但是对于分数本质的理解却是不甚了解,不知道怎么样的情况可以用分数来表示。在学习中,让学生通过具体的生活情景,引入1/2的初步认识。提供学生大量感性的素材,留给学生充足的思维表达的空间,帮助他们逐渐抽象分数意义的本质内涵。为今后学习分数打下扎实的基础。

数学10的教案篇3

教学目标:

1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

教学重点:

复数的几何意义,复数加减法的几何意义.

教学难点:

复数加减法的几何意义.

教学过程:

一 、问题情境

我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

二、学生活动

问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

问题2 平面直角坐标系中的点a与以原点o为起点,a为终点的向量是一一对应的,那么复数能用平面向量表示吗?

问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

三、建构数学

1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点z(a,b),我们可以用点z(a,b)来表示复数a+bi,这就是复数的几何意义.

2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

3.因为复平面上的点z(a,b)与以原点o为起点、z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的.距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

四、数学应用

例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

练习 课本p123练习第3,4题(口答).

思考

1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

3.“a=0”是“复数a+bi(a,b∈r)是纯虚数”的__________条件.

4.“a=0”是“复数a+bi(a,b∈r)所对应的点在虚轴上”的_____条件.

例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

思考 任意两个复数都可以比较大小吗?

例4 设z∈c,满足下列条件的点z的集合是什么图形?

(1)│z│=2;(2)2<│z│<3.

变式:课本p124习题3.3第6题.

五、要点归纳与方法小结

本节课学习了以下内容:

1.复数的几何意义.

2.复数加减法的几何意义.

3.数形结合的思想方法.

数学10的教案篇4

教学目标 知识与技能

从实际生活中感受有序数对的意义,并会确定平面内物体的位置

过程与方法 通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

情感态度

与价值观 培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣

重点 有序数对的概念及平面内确定点的方法

难点 对有序数对中的有序的理解,利用有序数对表示平面内的点

教学方法 以通俗、活泼的素材引入本节课内容;本节采用情景建构教学法

一 教学流程

(一)创设情境、导入新课

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

追问:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它们意义相同吗?

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

(二)合作交流、探究学习

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

(三)应用迁移、巩固提高

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

(四)回顾反思、拓展升华

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

(五)[拓展应用]

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

(六)布置作业

自由设计 二选??

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

教学反思

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

数学10的教案篇5

教学内容:

北师大版小学数学四年级下册第二单元“三角形边的关系”。

教材分析:

?三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学“空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。

学生分析:

从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。

教学目标:

1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学准备:

多媒体课件、实物投影、小棒若干。

教学过程:

一、导入

1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?

(生:三角形)。

师:什么是三角形?

(生:由三条线段首尾相接围成的平面图行就是三角形。)

师:围成三角形的三条线段是三角形的什么?

(生:边。)

2、解释课题

今天咱们就来共同研究三角形的三条边之间有什么奥秘。

二、探究活动

1、用4组不同长度的.小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。

①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?

师:是不是只要给你3根小棒你就一定能围成一个三角形?

师:怎么验证咱们说得对不对呢?

(生:实际动手摆一摆、围一围。)

师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。

②课件出示“活动要求”。

学生自读活动要求,师:清楚活动要求了吗?开始吧!。

③学生动手摆一摆并完成活动记录表。

④汇报活动结果。

师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)

师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)

2、进一步探究怎样的3根小棒能摆成三角形。

①课件分别演示4组小棒摆三角形的过程。

②两根短小棒长度之后小于长小棒时摆不成三角形。

出示第3组小棒(2,3,6)。

师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)

师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)

师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)

师板书:2+3

师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)

师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?

归纳:两根短小棒长度之后小于长小棒时摆不成三角形。

③两根短小棒长度之后等于长小棒时摆不成三角形。

师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?

课件演示。

师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)

板书:3+3=6

师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?

师:那么怎样的3根小棒也摆不成三角形呢?

归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。

④小结

师:咱们能不能用一句话概括摆不成三角形的两种情况?

生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。

⑤探究怎样的3根小棒能摆成三角形。

师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?

生:两根短小棒长度之后大于长小棒时能摆成三角形。

师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。

学生算一算验证猜测。

师:那么怎样的3根小棒能摆成三角形?

归纳:两根短小棒长度之后大于长小棒时能摆成三角形。

3、进一步探究三角形边之间的关系

①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)

②师:请你算一算,比一比。

学生同桌两人交流。

个别学生汇报计算结果。

③师:那么三角形的三条边之间有什么关系?

学生思考。

④归纳总结

三角形任意两边之和大于第三边。(板书)

师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。

(学生计算验证)

三、随堂练习

师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?

1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。

?三角形边的关系》教学设计

2、完成“练一练”1—3

四、布置作业

练一练。4

五、全课小结

数学10的教案篇6

活动目的:

1、通过目测比较高矮,知道什么高,什么矮,感知高矮的相对性。

2、学习高矮排序,能在一组物体中找出比某物高(矮)的其余物体。

3、学会简单的比较方法,发展幼儿观察、比较、判断能力。

重点:通过目测比较高矮,知道什么高,什么矮,感知高矮的相对性。

难点:学习高矮排序,能在一组物体中找出比某物高(矮)的其余物体。

活动准备:

1、 演示教具:两棵高矮不同的`树。

2、 操作材料:高矮不一的木棒、积木、瓶子、杯子、套娃等等。

活动过程:

(一)目测比较物体的高矮。

1、 出示两个娃娃,引导幼儿观察。

“这是谁啊?(两个娃娃)我把她们都放在这张平平的桌子上。看看这两个娃娃谁比谁高?谁比谁矮?(大娃娃比小娃娃高,小娃娃比大娃娃矮。)”

2、 再出示一个中娃娃,引导幼儿比较。

“我还有一个娃娃,我也把她放在这张平平的桌子上,并放在这两个娃娃的中间,这里就有1、2、3三个娃娃。看看她比哪个娃娃高?比哪个娃娃矮?(比这个小娃娃高,比这个大娃娃矮。)原来她们是比过以后才能知道高矮。”

(二)幼儿和幼儿小组比高矮活动。

1、 请一高一矮两个幼儿上来比高矮。

“刚才我们的娃娃比过高矮了,那我们小朋友也来比一比吧,我先请这一组的两个小朋友上来,你们都站在平平的地板上。看看这两个小朋友谁比谁高?谁比谁矮?”

2、 再请一个中等个子的幼儿上来,三个小朋友比高矮。

“我再请一个小朋友上来,站在地板上,在这两个小朋友的中间,看看她比谁高?她比谁矮?”

3、我知道还有其他组的小朋友也想来比一比,再请这组的两个小朋友上来。同上。

(三)幼儿和树小组比高矮。

1、 幼儿和大树比高矮。

“现在我请小朋友和别的东西比一比,知道是什么吗?(树)我把树放在平平的地板上,树高还是矮啊?(不知道)要想知道树是高还是矮是要有东西和它比的,那我请这组的一个(中个)小朋友来和这棵树比一比。谁比谁高?谁比谁矮?”

2、出示小树。“你们说是小朋友矮,那我还有一棵小树,也把它放在平平的地上,看看现在是谁比谁高?谁比谁矮?那小朋友和两棵树比一比是(小朋友比大树矮,小朋友比小树高。)”

3、我知道还有其他组的小朋友也想来和树比一比,再请那组的一个(高个)小朋友上来。谁最高?谁最矮?(大树比小树高,,大树比小朋友矮。)

小结:高和矮是要通过比较以后才能知道的,单独一个东西不能判断高矮。

(四)按高矮排序。

1、“老师为小朋友准备了很多玩具,这些玩具有高有矮,请你们在桌子上去比一比,按高矮来排排队。”

每个小朋友使用以下几类操作材料:

(1) 按瓶子高矮排序;(2)按套娃的高矮排序;(3)用积木从低到高叠楼梯;(4)按杯子高矮排序;(5)按小棒高矮排序。

2、讨论:请个别幼儿把排好的玩具拿到讲台来,这是什么玩具?数数有几个?教师指其中一个问,说说比这个玩具高的有哪些?比它矮的有哪些玩具?

(五)户外活动

幼儿到户外寻找物体比较高矮。

“今天我们学会了怎么样比高矮,现在我们从矮到高排着队,到外面找一找,有什么东西可以比高矮。”

数学10的教案通用6篇相关文章:

小班数学课教案优秀6篇

西师版二年级数学教案6篇

虫和鸟的教案通用6篇

有关纸的游戏教案通用6篇

幼儿园大班关于鸟的教案通用6篇

初中数学教案优秀教案优秀5篇

初中数学教案优秀教案最新5篇

10月国庆的演讲稿6篇

10字的演讲稿参考6篇

小学数学人教版教案8篇

数学10的教案通用6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
142445