通过书写教案,教师更好地组织学生的学习活动和讨论,促进学生的参与和互动,编写多样化的教案可以满足学生的不同学习需求和学习风格,以下是大学生范文网小编精心为您推荐的小数的性质教案8篇,供大家参考。
小数的性质教案篇1
教学内容:
苏教版五年级上册,第37--38页,例4、例5、例6。
教学目标:
1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。
2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。
教学重点:
理解小数的性质,并能应用性质解决实际问题。
教学难点:
感悟小数性质中不变与变化的数学辩证思想,发展学生思维。
教学流程:
一、情景导入。
创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。
二、自主探究。
1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.
2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?
3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。
4.深入研究小数的性质:
(1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。
(2)在小数的末尾添上“0”或去掉“0”,小数的`大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。
(3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?
5.添上两笔,让4、40、400三个数相等。
6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的末尾”这一关键词眼。
三、练习应用。
1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?
总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?
2.把下面物品的价格写成用“元”作单位的两位小数。
总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。
3.初步感知小数改写的作用。
四、课堂总结。
通过这节课的学习,你有了哪些新的收获?
小数的性质教案篇2
[课程标准要求]
课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。
[学情分析]
本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。
[学习目标]
1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。
2、运用小数的性质能正确地化简、改写小数。
教学重点理解掌握小数的性质。
教学难点
探索发现并概括出小数性质的过程。
[评价任务]
通过练习和例3化简例4改写小数检验目标1、2的教学完成情况
[资源与建议]
1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。
2、教具:课件
学具:米尺,方格图,殊为顺序表
授课对象:四四班学生
授课地点:考务办公室
3、本课的学习按以下流程进行
4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。
[学习过程]
一、创设情境,引导探索
1、谈话激趣
昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)
3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?
二、合作探究,探索新知
(一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。
下面我们以小组为单位来试一试,请看合作要求:
出示例1比较0.1米0.10米0.100米的大小。
要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。
2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?
(合作并比较)
0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?
汇报交流
生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的'纸条就是量出了0.1米长的纸条。
生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.
生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条
生:我们发现1分米、10厘米、和100毫米的纸条都一样长。
师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?
(二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。
出示例2:比较0.3与0.30的大小
师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试
合作要求;
1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?
2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?
汇报:
(1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.
(2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.
(3)我的发现是0.3等于0.30
师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)
(三)引导观察,得出小数的性质
指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?
生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?
生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?
通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“
学生归纳:在小数的末尾添上”0“,小数的大小不变。
从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?
生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变
师:综合刚才的观察,你发现了什么?
师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。
生齐读一遍.板书课题:小数的性质
(四)进一步探究,加深感知
师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?
注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)
齐读一边小数的性质.
根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。
练习
不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)
3.90米,0.30元,500米,1.80元
0.70米,0.04元,600千克,20.20米
三、联系生活,灵活运用
1.教师结合板书内容讲解性质的运用。
同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?
化简下面各小数:
例3 0.70 105.0900
小数里的其他零可以去掉吗?(不能)
一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?
练习
(2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。
出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?
把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“
请把这几个数改写成三位小数。
练习
应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?
同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)
请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?
四、全课总结
今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?
五、看课本
我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。
六、多层练习,巩固深化
(一)我是小法官(打”√“,错的打”ד)
1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()
2、在5.3的末尾添上三个”0“,它的大小不变。()
3、一个数末尾添上”0“或者去掉”0“,大小不变。()
(二)把相等的数连起来。
2.70 4.400
31.0100 0.005
72.060 2.07
0.0050 31.01
4.40 72.60
(三)给下面的物品加上标签(以元作单位,用两位小数表示)。
水杯3元2角
铅笔6角
板书设计:
小数的性质
2.5元=2.50元
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.3=0.30
小数的末尾添上”0“或去掉”0“,小数的大小不变。
小数的性质教案篇3
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.【演示课件数的整除】
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在123=4 48=0.5 20.l=20 3.20.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为155=3,所以15是倍数,5是约数. ( )
因为4.62=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
小数的性质教案篇4
教学目标:
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点:
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教学过程:
一、 创设情境,引入新课
师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?
生:扩大了10倍。
师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?
生:末尾添了2个“0”,扩大了100倍。
师:那我们能让它变小么?
生:把末尾的“0”去掉。
师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?
生:略。
师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?
生:不会变。
师:那我再添上一个“0”呢?
生:还是不变。
师:你是怎么知道的?
生:略。
师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?
生:验证。
二、讲授新课
师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。
(生动手操作)
师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?
(生汇报)
师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。
生:略。
师:有没有哪个小组是借用皮尺来验证的,谁来说一说?
(生汇报)
师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。
师:有哪个小组是借用数位顺序表来验证的么?
(生汇报)
师:还有哪个小组也来说说你们组研究的结果。
师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……
生:略。
师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的.位置发生了变化,那你们认为他的大小会怎么样?
生:略。
师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?
师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。
师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。
生:略。
师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?
生:略。
师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。
三、巩固练习
师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?
生:略。
师:1.05中的0可以去掉么?
生:不能,因为0不在末尾。
师:那你们认为在小数性质这句话中,哪个词是最重要的?
生:末尾。
师:接下来,我们来看这题,你们知道什么是化简么?
生:略。
师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?
生:略。
师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。
生:略。
师:今天我们学习了小数的性质,大家知道了什么?
生:略
师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。
师:好的同学们,今天这节课上到这,下课。
小数的性质教案篇5
教学内容:人教版数学第八册第四单元“小数的性质”
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题
教学过程:
一、谈话导入、课前质疑
1、师:今天老师给同学们准备了一个小魔术,我们来看看。
这个数认识吗?几呀?出示数字卡片:1
我能让这个数变大,看仔细哟。(添了一个0)
这个1的末尾添了一个0,这个数发生了什么变化?
老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。
看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)
师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。
2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?
这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?
在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。
板书:猜想 验证
二、探究新知、课中释疑
1.探究0.1米,0.10米,0.100米的大小
(1)有以有的知识来解释一下这三个数的大小。
请比较一下它们的大小。
板书:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的'形式吗?必须体现它们的原先单位。
导:分米和米有什么关系?厘米、毫米呢?
根据学生回答归纳演示:
1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2。
(1)比较1.30和1.30的大小。
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
(2)同桌商量比较,汇报结论。
问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。
课件演示重合图形。(在原板书下再板书:1.30=1.3)
(3)观察思考
观察板书1.30=1.3
这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。
3. 讨论归纳
教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?
教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)
4、指导阅读。
讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。
5、质疑问难:(判断)
你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)
(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。
举例说明后返回小数的性质,红字强调“小数”。
(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。
举例说明后返回小数小性质,红字强调“末尾”。
(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。
三、巩固运用、交流反思
小数的性质有什么作用呢?
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
l.出示例3:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
2.出示例4:。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
整数和小数用不同的颜色区分。
如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)
五、课堂小结
1.这节课你学到了哪些知识?有哪些收获?
小数的性质教案篇6
【教学内容】
【教学目标】
?教学重点】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。
难点:用“四舍五入”法按要求求出小数近似数。
【教学过程】
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做期末复习第8题(1)、(2)、(3)。
(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.121
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么是小数的性质?
2、做期末复习第9题,第1竖行两题。
(1)学生在书上做,指名板演,集体订正。
(2)让学生说一说怎样比较两个小数的大小。
3、做期末复习第10题。
(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做期末复习第8题(4)、(5)。
(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
4、做期末复习第9题剩下的两题。
(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(2)学生练习,集体订正。
(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
5、做期末复习第11题。
学生在书上做,并说明理由。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“”、“”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
小数的性质教案篇7
【教学内容】
人教课标版小学四年级下册第58、59页的内容:小数的性质
【学情分析】
小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
【教学目标】
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
【教学重难点】
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
【教法与学法】
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
【教学准备】
教师:自作课件
学生:收集的标签彩笔直尺和纸条
【教学过程】
一、创设情境,导入新课
1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?
生:2、00元,师:是多少钱呢?生:2元。
生:3、50元。师:是多少钱?生:3元5角
师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。
老师巡视并引导学生观察米尺图
2、各小组汇报:结合学生回答,教师板书:
0、1米是1/10米,就是1分米
0、10米是10/100米,就是10厘米
0、100米就是100/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0、l米=0、10米=0、100米
教师小结:这三个数量虽然各不相同,但表示大小相等、
设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
4、练一练:
(1)多媒体出示58页做一做:比较0、30与0、3的大小
师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
(2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)
(3)在两个大小一样的'正方形里涂色比较。
汇报结论:0、3=0、30
师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
5、小数性质应用、【继续演示课件“小数的性质”】
(1)教学例3:把0、70和105、0900化简、
思考:哪些“0”可以去掉,哪些“0”不能去掉?
105、0900中“9”前面的“0”为什么不能去掉?
(0、70=0、7;105、0900=105、09)
教师强调:末尾和后面不同。
(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。
(0、2=0、200;4、08=4、080;3=3、000)
思考:“3”的后面不加小数点行吗?为什么?
(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)
三、巩固深化,拓展思维
1、完成59页的做一做。
重点指导学生说一说为什么有些“0”不能去掉和
说一说为什么有些数的末尾添上“0”,原数就发生了变化、
2、挑战自我。
(1)谁能只动三笔,让下面三个数之间划上等号?
6020 = 602 =60200
(2)每人写几个和3、200相等的数、
设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。
四、全课小结
1、这节课你有哪些收获?
2、你对自己或同学有什么评价?
五、布置作业、
完成练习十1—3题。
板书设计:
小数的性质
例1 1分米= 10厘米= 100毫米
从右往左从左往右
0、1米= 0、10米= 0、100米
小数的末尾添上0或者去掉0,小数的大小不变。
0、3= 0、30 =0、300
例2化简小数。
0、70= 0、7 105、0900=105、09
例3不改变数的大小,把下面各数写成三位小数。
0、2=0、200 4、08=4、080 3=3、000
小数的性质教案篇8
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学过程:
(一)、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1( )=10( )=100( )
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示: 1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化??
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业.
完成练习十1-3题。
板书设计:
小数的性质
0.1米 = 0.10米 = 0.100米
0.3= 0.30
小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。
小数的性质教案8篇相关文章: